
NASA Contractor Report 187529

ICASE Report No. 91-20

ICASE
DOMAIN DECOMPOSITION METHODS IN

COMPUTATIONAL FLUID DYNAMICS

William D. Gropp

David E. Keyes

Contract No. NAS 1-18605

February 1991

_-in_stitute for Computer Applications in Science and Engineering

NASA Langley Research Center

............ Hampton, V'trginia 23665-5225

Operated by the Universities Space Research Association"

Nalional Aeronaulics and
Space Adminislration

LAngley Research Center
Hamplon, Virginia 23665-5225

I_' I

I p.._e_
UOL

Z _0

=

,,t

Zu_,

_Z

IE_'. m
O_
u_

_Z

_ 0

,_
=

:J <_" i

m

DOMAIN DECOMPOSITION METHODS

IN COMPUTATIONAL FLUID DYNAMICS

William D. Gropp 1

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

and

David E. Keyes _

Department of Mechanical Engineering

Yale University

New Haven, CT 06520

ABSTRACT

The divide-and-conquer paradigm of iterative domain decomposition, or substructuring,

has become a practical tool in computational fluid dynamics applications because of its

flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform)

grids, its ability to exploit multiple discretizations of the operator equations, and the modular

pathway it provides towards parallelism. We illustrate these features on the classic model

problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple

discretizations (second-order in the operator and first-order in the preconditioner) and locally

uniform mesh refinement pay dividends separately_ and they can be combined synergistically.

We include sample performance results from an Intel iPSC/860 hypercube implementation.

1The work of this author was supported in part by the Applied Mathematical Sciences subpro-

gram of the Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,

gropp©racs, an1. $ov.
2The work of this author was supported in part by the NSF under contract ECS-8957475, by the IBM

Corporation, and by the National Aeronautics and Space Administration under NASA Contract NAS1-
18605 while the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665,

keyes@cs, yale. edu.

__-_-

1. Introduction. The literature of computational fluid dynamics (CFD) ranges

from elegant analyses of model systems to detailed analyses of reallstic systems whose

executions require hundreds of hours of supercomputer time. Software generally mi-

grates from the former problem class to the latter at best slowly, and not without

performance penalties, because the source of elegance, efficiency, or optimality is of-

ten the exploitation of special structure that is absent in applications. Therefore, the

gap in attainable computational performance on ideal and practical CFD problems

has little prospect of closing completely. Rather, since problems with less uniform

structure usually are harder to map efficiently onto multiprocessors, parallel com-

puting would appear only to widen the performance gap between the ideal and the

real, while offering absolute improvements to both.

The combination of domain decomposition with preconditioned iterative meth-

ods extends the usefulness of numerical techniques for certain special partial differen-

tial equation problems to those of more general structure. The domains of problems

with features inhibiting the global exploitation of optimal algorithms can often be

decomposed into smaller subdomains of simpler structure on which extant solvers

serve as local components of a parallelizable global approximate inverse. The com-

putational advantages are usually sufficient to allow for the iteration required to

enforce consistency at the artificially introduced subdomain boundaries, often even

apart from parallelism. Size alone is often a sufficient advantage, since the com-

putational complexity of many solution algorithms is a superlinear function of the

discrete dimension, and thus p problems of size _ may be solved more cheaply than
one of size n.

Iterative methods based on choosing the best solution in incrementally expand-

able subspaces allow the tailoring of computations to specified accuracy requirements.

These methods can use multiple representations of the same underlying operator,

ultimately converging in terms of a desired "high-quallty" representation through

a series of applications of the inverse of a "lower-quality" representation, called a

preconditioner, that is cheap or parallelizable or possesses some other advantage.

Though already useful in linear problems and on serial computers, the ability to

operate with multiple representations of the operator proves even more significant in

nonlinear problems and in parallel. In nonlinear problems, for instance, precondition-

ers for the Jacobian can be amortized over many Newton steps, while the solution is

advanced through always up-to-date matrix-free approximations to Jacobian-vector

products. In parallel, preconditioners can be constructed whose action requires less

data exchange than a higher-quality representation would. One way to view domain

decomposition is as a means of creating parallelizable preconditioners for iterative

methods. The iteration required to piece together the solution at the artificial subdo-

main boundaries may be folded in with the iteration already implicit in the multiple

levels of operator representation and, ultimately, with an outer nonlinear iteration
as well.

Domain decomposition is a natural basis for partitioning programs across pro-

cessors and partitioning data across memories, and allows a natural integration of

local refinement, including refinementsof mesh,of discretization order, or evenof
operator and the representationof the unknown fields. Though domain decomposi-
tion is as old as the analysisof engineeringsystems,the past decadehas provided
a significant theoretical foundation for model problemswhich has, in turn, provided
heuristicsfor others. An asPect_°_finterest_t° us is the migration in problem pa-
rameter spacefrom the theoretically richly endowed"point" Of the linear, selfadjoint
problemfor a scalarequationon a (quasi-)uniformly refinedgrid to the regionof non-
linear multicomponent problemsspawninga sequenceof non-selfadjointadaptively
refined systems. Furthermore,we are interestedin formulating suchproblems in a
modular mannerconvenientto the designand maintenanceof parallel software. For
reasonsof flexibility and inertia in_t-he-m0de[ingo_'ciaenlicallyreactlng flowS,in par-
ticuiar, weareprimarily interested-in_e'd_lTerence or-fin-it-eVoiumediscretizations,
but without relying on first-order methodssincethey are almost nevercompetitive
when the criterion is fewestoperationsfor a given accuracy.

The philosophyof this paper has beenset forth previously in [14] and [17], in
which the gains of local refinement and multiple-order discretization, respectively,
wereillustrated. The backstepflow test problemwith uniform meshand discretiza-
tion order wasconsMeredin [16],whereit was:shownthat most of the portions of the
codeassociatedwith the nonlinearand linear subtasksparallelize with comparable
overhead.In this paper,weshowthat the confluenceof thesevarioustributaries leads
to a convenientlyprogrammedparallel implementationonmedium-scaleMIMD ma-
chines,andweexploreits parallel efficiencyononesuchmachine,the Intel iPSC/860.
In the interestof brevity, weomit manyalgorithmic detailscoveredin the references.

Section2 describesa basic two-level algorithmic framework for implicitly dis-
cretizedconvection-diffusionsystems.This is generalizedin Section3 to second-order
adaptive refinementsand placedin the context of an overall Newton iteration. The
numerical results of Section4 display the accuracy and parallel efficiencyof some
resulting combinations,and weconcludein Section5 with a considerationof future
objectives.

2. The Philosophy of Iterative Domain Decomposition. The domains of

dependence of resolvents of elliptic operators, such as the spatial terms of the mo-

mentum and energy equations of (subsonic) fluid mechanics, are global, though there

is a decay with the distance between the source and field points. The global depen-

dence implies that data must travel across the grid from each point to all others

during the solution process (for the satisfaction of sensible accuracy requirements).

This requires a number of local data exchanges approximately equal to the discrete

diameter of the grid or, possibly, a smaller number of longer-range exchanges derived

from the use of multiple spatial scales. A length scale in between the integral length

scale of the domain and the fine mesh parameter occupies a central place in our

domain decomposition methodology. The intermediate scale need not directly deter-

mine the granularity of the parallelization, but it is convenient to base the parallel

mesh data structure upon it.

J_;_i _Li_i_ _i_Li__Li_L
I I I I I ! I I I | I I

.1--}--,I.o --I..JL--I_ .J--L,,I.-I--L J--L,...

I I I I I I I I l I I I

I I I I I I I I I I I I

J-LL _LI_I_ "J-LI J-L

o i I I t I I I I I I I

1-i-T -r_-,- _-r-T--r_-r-

111 I I I I i I I I I

"] -I-T ---r] -i- "3-r T-i- F l-r

"#-I- f -I--t-l- .-4-1-_- -t--I-I-
J_I_L _L4_I_ .J-L1--LJ-L

I I I I I l I I I I I I

I , , ', r , I , i t , , I' i " _

I I--L-I-L-J-L!--I_ H

...... _.,IF

FIG. 1. Schematic showing the length scales of the discrefization, h, and decomposition, H.

2.1. Global Data Transport. "Classical" results quantifying the trade-offs

between purely local and global data transport are given in [2] and [8]. These pa-

pers show how preconditioned conjugate gradient iteration may be used to obtain

solutions to two-dimensional selfadjoint elliptic problems in a number of iterations

at most weakly dependent on the fine grid resolution through the logarithm of the

ratio of the diameter of subdomains into which the global domain is divided, H,

to the mesh parameter, h (see Figure 1). The cost in each case is the iterated so-

lution of a subdomain vertex problem equivalent to a coarse discretization of the

original operator with the subdomains as elements, along with the solution of the

independent problems on the subdomains themselves (and on the one-dimensional

interfaces in the case of nonoverlapping subdomains). Thus, the preconditioner is

two-scale and requires regular non-nearest-neighbor data exchanges. For the precon-

ditioner to be cost-effective, the nonlocal work should be subdominant. Practically,

this requirement imposes a minimum H/h ratio. If the subdomain vertex solve in the

preconditioner is replaced with a simple diagonal scaling, which removes the require-

ment of non-nearest-neighbor data exchanges, the bound on the iteration count rises

in inverse proportion to H. If the subdomain solves themselves are likewise replaced

with a simple diagonal scaling, it is a classical result for elliptic problems that the

conjugate gradient iteration count rises in inverse proportion to h. The trade-off

between the amount of work done in the preconditioner and the total number of

iterations is thus well characterized, asymptotically.

The results for two-scale preconditioned selfadjoint problems have been extended

in [4] and [5] to non-selfadjoint problems. Conjugate gradient iteration is replaced

with the Generalized Minimum Residual (GMRES) method, and the bounds worsen

by one or more powers of the factor (l+log(H/h)). It is required in currently available

convergence proofs that the coarse grid be suftlciently fine; in particular, a subdomain

Reynolds number must be bounded. (Some convergence proofs for multigrid on non-

selfadjoint problems avail themselves of a similar restriction.) Predecessors of the

theoretically characterized non-selfadjoint form of the algorithm have been described

for a scalar partial differential equation in [14] and [15]. These algorithms require

more iterations of cheaper preconditioners and are roughly as effective (measured in

executiontime) asthosepossessingoptimal convergenceratesuntil H and h take on

rather small values.

Whether the subdomains are assigned indivisibly to processors (as in our current

codes), or whether the uniform tasks they represent are further subdivided in SiMD

fashion, two-scale preconditioners significantly alleviate the sequential bottlenecks

of global preconditioners such as incomplete factorizations. However, truly massive

parallelism may require yet richer hierarchies of scales.

2.2. Preeondltloned Krylov Iteration. Our domain-decomposed precondl-

tioners are used in conjunction with the Krylov iterative method GMRES, described

algorithmically in [23] and analyzed theoretically in [10] and [9] (in the equivalent

form of the generalized conjugate residual metliod). Each iteration of GMRES in-

volves a matrix-vector multiply requiring local data exchanges only and tile precon-

ditioner solve, in addition to some inner products. GMRES converges in a number of

iterations proportional to the number of distinct clusters of one or more eigenvalues

of the preconditioned operator. Lo0sely_peaking, t_he g rea!;er the accuracy required,
or the closer the ciustert0 the origin, the smaller the tolerance on what _constitutes

a single "cluster." Efficient use of GMRES in elliptic problems generally requires

preconditioning to produce clustering. The appeal of GMRES is that it is robust

and requires no user-estimated parameters. However, other iterative methods po-

tentially requiring fewer inner products and smaller memory could be used instead;

we mention the GMRES-Richardson hybrids in [19] and [24] and the Bi-CGSTAB

method in [27] among contemporary candidates.

We summarize this section by establishing notation. A general framework for

iterative domain decomposition methods for solving linearized elliptic systems con-

sists of a global discrete operator, A; a global approximate inverse, B-I; an iterative

method requiring only the action of A and B-l; and a geometry-based, contiguity-

preserving partition of unknowns inducing a block structure on A and B.

We denote all subdomain vertices "cross-points." Ordering tlle interior points

first, the interfaces connecting the cross-points next, and the cross-points last imposes

the following outer tri-partition on the global discrete operator A:

Ai AI,s Ale
(1) A =_- Ast AB ABe

Acl AcB Ac

Note that the partitions vary greatly in size. If H is a quasi-uniform subdomain

diameter and h a quasi-uniform fine mesh width, the discrete dimensions of AI, AB,

and Ac are O(h-_), O(H-lh-1), and O(H-2), respectively.

The structure of our preconditioner, B, is closely related to a conformally parti-

tioned matrix

(2) B = BB ABc ,

0 Bc

consisting of the block-upper triangle of A, except for the replacement of Ac with an

H-scale dlscretization of the original operator on the vertices, Be, and the replace-

ment of AB with an h-scale discretization of the original operator along the interfaces

of the decomposition with the normal derivative terms discarded, Bs. (See [6] for

some numerical tests of this interface preconditioner.)

The application of B -1 to a vector v = (vl, vB, vc) T consists of solving Bw = v

for w = (wl, ws, wc) T. It begins with a cross-point solve with Be for we. This

updates through ABe the rlght-hand sides of a set of independent interface solves

for subvectors of ws and the right-hand sides of a set of independent interior solves

for subvectors of wx through Azc. The interface solves, in turn, further update the

right-hand sides of wl through AIB. Finally, the subdomain solves are performed.

Note that the solves for wB and wl provide O(H-2)-scale parallelism.

There is no dependence within the preconditioner of the cross-point or interface

solutions upon the result of the interior solutions. This distinguishes the method from

[2] and [5] and means that the O(h-2)-sized block of the precondltloner is visited only

once per iteration. However, an important variation of the preconditioner exists that

represents a compromise between the strictly block triangular algorithm above and

the cited methods. Following [2], we have found it advantageous to replace the right-

hand side values vc with weighted averages of the right-hand sides along adjacent

interfaces before solving the cross-point system. This approach incorporates some

lower-triangle coupling without any additional solves (see [14] for a detailed matrix

interpretation).

3. Practical Domain Decomposition Algorithms for CFD. In the present

contribution we merge four tributaries of our recent work: (1) local uniform mesh

refinement, (2) use of a pair (A, B) in which B is of lower order (defect correction),

(3) nonlinear solvers, and (4) implementation on parallel processors.

3.1. Locally Uniform Mesh Refinement. In many cases, the problems gen-

erating the discrete systems to be solved by domain decomposition have several dif-

ferent physical length scales. Since the polynomial approximations underlying local

finite discretlzation methods are length-scale specific in their validity, mesh refine-

ment (perhaps in combination with refinement of discretization order) is often used

to produce an accurate solution. Locally uniform mesh refinement [14] is an adaptive

resolution technique that is well suited to domain decomposition. By it, rectangular

subdomains are refined with locally computationally regular tensor-product meshes.

This refinement permits easy and efficient vectorization and allows consideration of

fast solvers as components of domain-decomposed preconditioners. Different subdo-

mains may have different mesh refinement, but the refinement is of a uniform scale

within a single subdomain. This regularity allows a concisely expressed and flex-

ible algorithm. Changes in grid refinement at interfaces between subdomains are

accommodated with mutually overlapping phantom points and biquadratic interpo-

lation. The phantom points allow the use of conventional finite-difference techniques

(for second-order differential operators) in generating the difference equations at the

(0,2)

(0,0)

._i:Li_i_+_i_.i_`H_i_.i_+.Li_i_H._i_i_i_k+_i_i_I_`i..i_.L_i._
, .. i i , v , i + , , i • , | + i .L i + /-+-+-,--I-+-i--<--l--,--_-_--I--t--_-+-4--_--H-_-<--I--_-4-H--t--}-,-_--+--I-+-_--I--
i • , + , + i i i , , i + , B , , . ._ . i i .,tt".... +"I '"t'*" i t''']'''t'""_'_" "'"""*" "+"""'I :'I" I : : I I I I I I II'+"+ "*....... +" "_"-'""

+++:+++,_",'t+ i I. ,.,__+ .+., .,..
:++:;::;: +":t+'::+:: """r'T + "t-':'T" ' ': "; .+ I ; • I] ; I ,':" I , , l- I

_-+v,+H+,i:-,_iz,i:,:_-+-+-+- .-;--+-+---Vh-'-.--;.... i----,--v-i---'-,,'--i---+-,'--<--
._Z.+,.__._,'_'_'++'.,"?_'f + , . , + ; + I ! ! ! I '+ " : I : +: t + ; ! : I ! _ !

t±H:t!±!:M:uH:._ +:H±H:t_:M:t!'_t:H+:H±t::tF-;H:tf::t+:._Hut+::H=t+'-"H:
I:_M:_]-?-i:H-_H:'_'ii:_-l':i,tltH'_tl:;I_:li:_i::II:_-li:tl::II:H_-II::I_-11:_-1!:

......... _ +'.. "r,,'.',I,T.; ._,_ ,+.,,+ -r-,C..+;-_;-i:h+t:H$!l:_<-H-+_,<-+-:-+<-H++-_t+I<-H-!l:_!t-!l--!l:ll!l!::!£11:;:M:

(10,2)

(lo,-1)

Fro. 2. Schematic of a composite grld for the backstep]tow problem, with well-developed inflow

(left) and outflow (right) velocity profiles super'posed. The upper and lower surfaces are rigid walls.
Refinement is employed near the step and in the recirculation region. (The composite grids actually
used to generate the data in the following section are finer than shown here.)

subdomain interfaces. The selection of general refinement criteria is well examined in

the literature (see, e.g., [28] for a recent review) and beyond the scope of the present

contribution. In the specific example presented below, a sufficient refinement strat-

egy is suggested by the known location of the vorticity singularity and confirmed by

the ability to accurately reproduce known results. Much more efficient refinement

strategies exist and we plan to incorporate them in a self-adaptive way in the future.

In [14], the classic problem of Poisson's equation in an L-shaped domain was

used to illustrate the memory and execution time savings allowed by subdomain-

based local mesh refinement over global refinement, without sacrifice of accuracy.

For an effective resolution of h -t = 128, for instance, a reduction factor of just over

6 in execution time accompanied a reduction factor of just over 5 in the number

of unknowns required to represent; the solution. Empirical observation of iteration

counts in the globally and locally refined cases suggests that it is the finest mesh

spacing, not the number of unknowns per se, thal; determines the convergence rate

in variably refined domain decomposition algorithms. Though the theory developed

for quasi-uniform grids cited in Section 2.1 is not directly applicable to our tests, the

results of the tests and the theoretical estimates are consistent if the maximum H/h,

i.e., the discrete dimension of the finest tile, is employed in the latter.

Figure 2 below illustrates how the locally uniform refinement technique is applied

to the L-shaped backstep flow problem.

=

r

3.2. Accelerated Defect Correction. A conventional defect correction method

for solving the system of equations

(3) N(u)=o,

where N depends continuously on u, is as follows. We suppose that we can easily

solve a related problem

Then we initialize u by solving

°) =o

and iterate:

=

If the iterations converge, they converge to a solution of (3). In our context, /Y is

simply a lower-order discretization of N.

For linear N(u), this stationary defect correction can be accelerated by using

the N discretization as the basis for a domain-decomposed preconditioner B for

A - N. In [17] we found an accelerated version of defect correction to be useful

in maintaining second-order accuracy in a CFD finite-difference discretization while

employing only the more convenient first-order upwind differencing for the convective

terms in the preconditioner. Full second-order-in-h truncation error convergence was

observed for smooth problems. Two types of measurements were made to quantify

the performance of this algorithm. For a fixed h, the number of iterations required

for algebraic convergence of the preconditioned GMRES method was compared with

a case in which A and B were based on the same first-order upwind discretization.

The method with second-order A required more iterations, but never more than 1.5

times as many. In terms of the execution time required to achieve a fixed truncation

error, the method with second-order A was an order of magnitude more efficient

because of its sparser grid.

3.3. Newton's Method. For the solution of steady reacting flow problems,

robust variations of Newton's method, assisted as necessary by parameter continua-

tion, are often preferable to less fully coupled iterative methods or associated explicit

time-marching methods (see, e.g., [25]). We regard the current work as a prelude to

building reacting flow codes for MIMD parallel architectures; thus, it is natural to

focus on Newton methods.

We write the overall system in the form

(4) F(¢) = 0,

where ¢ represents a column vector of all of the unknowns. Equation (4) may be

solved efficiently by a damped modified Newton method provided that an initial

iterate ¢(0) sufficiently close to the solution ¢* is supplied. The damped modified

Newton iteration is given by

(5) ¢(k+1) = ¢{k) + ,_{k)_¢{k),

where

(6) = -(3¢k))-1

where the matrix j(k) is an approximation to the actual Jacobian matrix evaluated at

the k th iterate. We refer to 6¢ (k) as the k th update. When _(I,) = 1 and j(k) = J(D =
8F
o--_(¢(k)), for all k, a pure Newton method is obtained. The iteration terminates when

some (scaled) 2-norm of _¢(k) drops below a given tolerance. In well-conditioned

systems, this will, of course, also be true of the norm of F(¢(k)).

From the discussion of equations (5) and (6) we identify the five basic tasks that

together account for almost all of the execution time required by the Newton algo-

rithm: (1) DAXPY vector arithmetic, (2) the evaluation of residual vectors, (3) tlie

evaluation of Jacobians, (4)theev%luation of norms, and (5) the solution of linear

equations involving the Jacobian matrix. The DAXPY requires no data exchanges

between neighboring points. The residual and Jacobian evaluation (performed an-

alytically here) require only nearest-neighbor data exchanges. The evaluation of

norms and the linear system solution require global data exchanges and are hence

the focus of a parallel impiementati0n, in a general-purpose Newton algorithm, sig-

nificant amounts of code must be written beyond the steps listed here. Automating

the continuation, damping, and Jacobian re-evaluatlon strategies can greatly affect

the efficiency of a Newton method. However, these essential additional tasks require

insignificant amounts of computational work not already in the five categories above.

3.4. Parallel Implementation. Preceding sections have described a conve-

nient domain-based clustering of work into "tiles" while flagging the phases of the

overall algorithm that require inter-tile data exchanges. A parallel implementation

follows directly, except for decisions regarding the solution of the global coarse grid

problem, for which the best algorithm is architecture- and problem-dependent. Many

details of serial, parallel shared-memory, and parallel distributed-memory domain de-

composition algorithms for linear problems have been given in [13] and [15]. It is

interesting that "good" algorithms for all three computing environments can share

over 95% code in common.

Work arrays for the data structures associated with each tile are allocated indi-

vidually to available processors according to heuristic load-balance criteria, without

priority concern for proximity in the processor network of processes associated with

neighboring subdomains. (Users of domain decomposition algorithms on earlier In-

tel hypercubes concluded that the penalty for failing to preserve nearest-neighbor

connections in subdomain-to-processor mappings is at most 20% percent in total

runtime [11]. This is non-negligible, but worst-case load imbalance penalties when

nearest-neighbor connections are slavishly preserved can be arbitrarily higher. Map-

ping algorithms simultaneously satisfying good load-balance and good subdomain-

processor locality constitute an on-going research effort. From a practical point of

view, a cost-benefit analysis of the mapping algorithm itself must be taken into

consideration. For representative pointers into this literature, [1] and [20] may be

consulted.) A buffer is maintained around the perimeter of each tile of a width cor-

responding to the semibandwidth of the difference stencil in use on that tile. These

buffers are refreshed by interpolation from neighboring tile interiors at appropriate

synchronizationpoints.
Generally, individual processorsare responsiblefor multiple subdomains,and

tiles assignedto the sameprocessorare processedsequentiallywithin eachsynchro-
nizedphaseof the algorithm. Optimizationshavebeenincorporatedinto the parallel
codeto packetizedataexchangesbetweenthesameprocessorsresultingfrom different
tile-tile interfaces. On a machinewhere interprocessorcommunication is relatively
expensive,suchasthe iPSC/860, messagebuffering is potentially valuabIe,but more
attention to the tile-processormapping is required to fully exploit it. The major
usesof the freedomof MIMD (as opposedto SIMD) programmingare in the vari-
able resolution of tiles (for adaptivediscretization), the variablenumber of tiles per
processor(for load balance),and the enforcementof boundaryconditions. Boundary
conditionsareoften abugabooof parallel programming,but wemust recognizethem
only in the preconditionerand only in an approximatemanner. This is becauselocal
boundary conditions of any mathematically reasonabletype canbe cast in the form
of matrix-vector multiplies with the operator A.

It is typically uninviting to solve the relatively small preconditioner coarse grid

problem defined by the tile vertices, a sparse linear system, in a distributed fashion.

There is too little arithmetic work per processor at modest tile-to-processor ratios.

Neither is it optimal to gather the distributed right-hand side data for this problem

onto a single processor, solve it sequentially while the other processors wait, and

scatter the result back. The communication time of the latter approach can be cut

roughly in half by broadcasting the right-hand side data to all processors and solving

redundantly on each. The redundant coarse grid solution is used in generating the

parallel performance data given below.

A different technique, called the "asynchronous crosspoint solve," allows the in-

version of the diagonal blocks of BB and At in the precondltioner to begin before

the coarse grid solution has completed. Since the result of the preconditioner solve is

linear in the components of the right-hand side, it is possible to compute in a prepro-

cessing step the discrete Green's functions associated with each vertex. Storing these

Green's functions requires four extra vectors of the dimension of the number of un-

knowns in the discretization for each unknown field in the system of governing PDEs.

(Thus, for example, a two-component streamfunction-vorticity system requires 8 ex-

tra vectors of size 2N, where the composite grid consists of N points.) After the

coarse grid solve is completed, its high communication requirements overlapped with

the bulk of the preconditioner solve, the proper components of the vertex Green's

functions can be added in. The vertex Green's functions would generally have to

be recomputed each time the Jacobian was re-evaluated, at the cost of four sets

of subdomain solves. The optimal tradeoff between the potentially inhomogeneous

workload and extra preprocessing and storage of the Green's function method ver-

sus the parallel inefficiency of solving the vertex problem is both architecture- and

problem-specific, and has not been pursued in the current code.

4. Flow over a Baekstep. We illustrate the capabilities of the nonlinear domain-

decomposed solver on a classic model problem from computational fluid dynamics,

the flow over a backstep, studying both solution accuracy as a function of dlscretiza-

tion and parallel performance as a function of refinement and processor granularity.

Though it is a favorite demonstration problem, there is no single canonical back-

step flow configuration in the literature. The principal variations lie in the choice of

symmetric channel geometry or a flat wall opposite the step, in the characterization

(plug flow, fully developed, or experimentally measured) of the upstream boundary

conditions, in the ratio of step height to channel width, and in the smoothness of the

step itself. For present purposes, we fix these choices as a flat opposite wall, a fully

developed inlet profile (located two step heights upstream), and a channel expansion

ratio of 2 to 3 occurring abruptly at the step (see Figure 2).

Inasmuch as the flow is well characterized as laminar, steady, and two dimen-

sional in the Reynolds number range we model, we use the streamfunction-vorticity

formulation of the incompressible Navier-Stokes equations, in which velocity compo-

nents (u, v) are replaced with (¢,w) through

=

(7)
0¢ 0¢ Ou Ov

u=-_y, v- ff-xx' andw--_y Ox

The streamfunction satisfies the Poisson equation

(8) - v2¢ + w = 0,

and the vorticity the convection-dlffusion equation

(9) Re U_x +v -V2w=0.

This system is nondimensionalized, with the step height as the reference length

and the centerline inlet velocity as the reference velocity. (Some authors employ

the mean inlet velocity in nondimensionalizing. Their Reynolds number, Re, is thus

two-thirds the size we report, for the equivalent flow configuration.)

We observe that (apart from boundary conditions), the Jacobian of this system
has the form

-V I)(10) J : C1 --V2 -I- C2 '

in which matrices C1 and C_ approach zero with the Reynolds number. If convenient

boundary conditions could be specified for the vorticity, a good precondltioner for this

system could comprise a pair of fast Poisson solvers, but this condition is typically

unmet in practice.

The boundary conditions employed in the numerical tests are specified with ref-

erence to the domain in Figure 2. The inlet streamfunction and vorticity are derived

10

from integration and differentiation, respectively, of the assumed well-developed up-

stream velocity profile, u(O,y) = y(2- y) and v(O,y) = 0. (¢ is referenced to zero

at the origin of coordinates.) Along the fixed, impenetrable no-slip upper and lower

walls ¢ is constant; hence all its tangential derivatives are zero. Through equation

(8), w is thus set equal to -_, where n is the unit normal, chosen in the vertical by

default at the degenerate corner of the step. (Numerical experiments with alternative

choices described in [22] did not suggest an obvious preferred way of breaking this

degeneracy, the mathematical artifact of an infinitely sharp step, and it is evident

in the results that our arbitrary choice is not limiting as regards the phenomena

of interest.) Finally, along the outflow boundary we used extrapolation conditions:

aq, = 0 and _ = 0. These conditions were accuracy-limiting at sumciently large

Reynolds number in a straightforwardly removable way, as described below.

We employed a variety of discretizations at seven Reynolds numbers spanning

the range from 50 to 200 in increments of 25. We ran the full set of problems on a

Sparcstation-1, then ran a subset of problems at Reynolds number 100 on the Intel

iPSC/860, varying the number of processors employed from the smallest number

containing sufficient aggregate memory up to the maximum available (32) in order

to evaluate performance. We employed zeroth-order continuation to shorten the time

required to sweep through Reynolds number space, that is, we used the solution at the

next lower Reynolds number as a starting estimate at the current, beginning with the

case (Re = 50) in which the nonlinear influence is the smallest. Continuation is often

employed in nonlinear solvers for robustness, but in this Reynolds range we employed

it only for convenience. In no case did the Newton algorithm suffer convergence

difficulty in starting from "cold" estimates obtained either by extrapolating the inlet

flow unchanged downstream and patching it to an initially stagnant region behind

the step or by assuming the entire domain to be stagnant.

A sample solution at Re = 100 is contoured in Figure 3. The dividing stream-

function contour lies slightly below the top of the step, towards which it climbs from

a pure Stokes (Re = 0) solution, reproducing a known feature of this flow field. The

center of the channel is vorticity-free. The vorticity is high on either side of the

channel just upstream of the step, and the highest vorticities occur in the neighbor-

hood of the step itself, where it is undefined. It is evident from the figure that the

flow returns to an almost symmetrical shape following the aysmmetrical expansion,

though the exit profile has not yet achieved its asymptotic parabolic profile only

eight step heights downstream.

4.1. Solution Accuracy. Since no exact solutions of the backstep flow prob-

lem are available, we rely on comparisons of functionals of the solution obtained

previously by other investigators in evaluating the accuracy of our numerical solu-

tions. Four such scalar functionals are the length of the recirculation zone (as defined

by the reattachment point of the dividing streamfunction contour), the strength of

the recirculation (as defined by the maximum magnitude of the streamfunction in the

recirculation region), and the downstream and transverse coordinates of the point at

11

SLreomfunoLIon

I0 . I i

8 -

- i
2 -

O0 2 O0

V,orLIolLy

!lI/r
1

i" _ t i T"_tt

L÷ I !
2

FIG. 3. Contour plots of streamfunction and vorticitp for Reynolds number 100 flow over a
backstep. (In the display orientation the flow is from bottom to top, and the true aspect ratio is
distorted, allowing more detail in the transverse direction.}

which the maximum magnitude of the streamfunctlon is achieved.

For Reynolds numbers in the range investigated (50 to 200), the length of the

recirculation zone is well approximated as a linear function of Re. (See [21] which

discusses a similar study with the spectral element method and supplies references to

earlier experimental and numerical investigations.) We adopt the notation Lr for this

length (measured in step heights) and show in Figure 4 previously obtained results

for Lr versus Re, along with results of our domain decomposition code. The spectral

results of [21] and the (evidently highly resolved) finite difference results of [7] on

domains sufficiently extended in the downstream direction fall very tightly around

the dashed line connecting Re = 50, Lr = 2.87 with Re = 200, Lr = 8.18. (At

higher Reynolds numbers, the time-averaged reattachment length is known to slow

as a function of Re, achieve a maximum, and eventually retreat part way upstream,

though this behavior occurs in the turbulent regime.) Note that the reattachment

point at Re = 200 lies a bit beyond the edge (dashed cutoff) of the domain of Figure

2. Because an accurate Lr is unmeasurable in this case, some data points are missing

at Reynolds number 200. The two data points shown at Re = 200 correspond to

discretizations that are artificially diffusive enough to severely shrink the recirculatlon

zone. The close approach of L_ to the boundary at Re = 175 allows showing the

manner in which the extrapolative downstream boundary condition fails by pulling

the tail of the recirculation zone out of the domain. The less artificially diffusive the

discretization, the greater the effect of the outflow boundary condition on L_.

As listed in the legend of Figure 4, first- and second-order upwinding are com-

bined With resolutions of ten gridpoints per unit length (base) and twice and thrice

this resolution in refined regions near and downstream of the step. It is observed that

12

10

.,J

va 5

O

I ' " I
0 i , i , I , , ,
0 50 250

Outf low BC;--:

.0"" +

×

.X_" ×- ×

X First-order, h=l/10

_ irst-order, h=ly,20First-order, h= 1/3.0
[] Second-order, h=l/.10

_ Second-order, h--iX20
Second-order. h=l/a0

, I 7---, ,Spectral ,(Patera,.., ,19841,
100 150 200

Reynolds Number

Fla. 4. Realtachment length versus Reynolds number for six different combinations of mesh

refinement and discretization order for the backstep flow problem.

switching from first- to second-order discretization is more effective than adaptive

h-type refinement, and that a combination of second-order and modest refinement

achieves nearly full accuracy for the Reynolds numbers considered. Using accepted

values of the reattachment length at various Reynolds numbers to define errors, the

first-order discretizations plainly yield first-order convergence, whereas the second-

order discretizations yield superlinear convergence, full quadratic convergence being

difficult to measure with just three points.

The maximum magnitude of the streamfunction in the recirculation zone nor-

malized by the difference in streamfunction across the entire channel, [A¢lm_=/¢0, is

known to approach from below a value of approximately 2% as the Reynolds number

increases through our range of interest. The broken line in Figure 5 closely fits the

data of [21] in the range shown and the markers show how the values of recircula-

tion strength are approached under the same set of six discretization combinations

tested above. For this rather sensitive functional, doubling resolution is more effec-

tive than doubling order relative to the crudest approximation. The fundamental

problem of upwind differencing in the presence of recirculation is discussed in [3]

and references therein. Fortunately, recirculation occurs in flow regions where the

Reynolds number based on the local velocity is small in typical applications. In such

regions, second-order central differencing in A poses no problems for the upwind-

preconditioned system [17], and the local discretization can be adaptively switched.

However, this adaptive switching is not yet incorporated.

Throughout the middle of the Reynolds number range, the downstream coordi-

nate of the point of maximum recirculation streamfunction relative to the edge of

the step and normalized by overall recirculation zone length, Ax,,/L,, is 0.3 4- 0.01.

The corresponding transverse coordinate, Ay,_, is 0.4 4- 0.03 step heights, nearly

13

o
--'0.02

o

mO.O1

o
;z

i i , I

0
X

0.00 , , J J I
0 50

' ' ' ' I ' ' ' ' I ' ' ' ' i ' ' ' '

.
___ [] F1FI

[] X X

[] X X X
X

X First-order, h=I/10

First-order. h=IXY0 I

First-order. h=I/30
D _econd-order, h=l_10
0 _econd-order, h=IXY0
O _econd-order. h=I/30

_p_ctral (Patera 19841Illlll|ll/llll/l'll

100 150 200 250
Reynolds NLrrber

FIO. 5. Mazimum normalized recirculalion slreamfunction versus Reynolds Number for siz

different combinations of mesh refinement and discretization order for the backstep flow problem.

independent of Re. These are both in close agreement with earlier numerical and

experimental results.

From the graphs it is clear that a first-order upwind method is an inefficient

means of obtaining accurate solutions as the Reynolds number increases; but that

it nevertheless makes a convenient preconditioner for a higher- (here, second-)order

upwind operator. These conclusions are not new; tile novel aspect of this work is the

modular manner in which the composite grid preconditioned operator is constructed

which leads to convenient local refinement and parallelism. The selection of which

tiles to refine and how much to refine them was crudely guided by knowledge of the

problem, but is clearly amenable to finer tuning through automatic error estimation.

Perhaps the worst aspect of the performance of the less accurate methods is that they

fail to detect that the domain is too short at the highest Reynolds numbers tested,

because of their artificially high diffusivity. Complaints that heavily upwinded dis-

cretizations conceal their own errors are common in the literature and are among the

strongest incentives for building modular software that makes checking alternative

discretizations and refinements feasible and convenient [18].

Counting streamfunction and vorticity values separately, there are 5,862 degrees

of freedom in the base grid, 10,422 in the intermediate, and 21,702 in the most refined

problem. We emphasize that these are far from competitive refinements for tile-based

finite-difference discretizations, since the streamwise direction is very overresolved

relative to the transverse when grid elements are squares, as here. Nonisotropic

tessellations and nonisotropic refinement of individual tiles are clearly possibilities

that fit comfortably within the tile framework. The data above serve only to show

how refining locally and changing operator order may be done without sacrificing

regularity in the implicit portions of the computation. Though not obtained on

14

optimal discretizations, the data make positive statements about the discrete solution

process. For convective-diffusive problems in which geometrical complexities in the

boundary and the distribution of sources or sinks require large numbers of unknowns,

the fully implicit, fully nonlinear iterative solver performs robustly.

4.2. Convergence Behavior. We comment briefly on several aspects of the

nonlinear and linear algebraic convergence in the numerical experiments reported
here.

The effectiveness of the continuation procedure can be communicated by means

of a typical example from the "middle" of the physical and numerical parameter space

explored in this study. We consider the Re = 100 flow with a second-order upwinded

operator and one level of refinement from a base grid consisting of 2 tiles per unit

length (the step height) and 5 mesh intervals per tile, resulting in an effective h -1 of

20 in the refined regions. The following timings are quoted from a Sparcstation-1.

From a "cold" start, with an initial nonlinear residual Euclidean norm of 2.13 x 101,

four Newton steps were required to drop the final residual to 9.96 x 10 -3. These

four Newton steps required a total of 132 preconditioned GMRES iterations (with a

different first-order upwind domain-decomposed preconditioner for each of the four

sets) and a total of 229 sec of CPU time. From a "warm" start consisting of the

converged solution to the problem at Re = 75 and an initial nonlinear residual

Euclidean norm of only 4.25 x 10 -l , three Newton steps brought the final residual to

a comparable 9.36 x 10 -3. The last Newton step required only one preconditioned

GMRES iteration, thus the construction of the precondltioner forthe third stage was

largely unamortized effort; nevertheless the totals of 63 GMRES iterations and 103

sec of CPU time represented a little less than half the effort of the "cold" start case.

The relatively modest relative reductions in nonlinear residual (O(109)) at which

convergence was declared were sufficient to bring out the full truncation error po-

tentials of the discretizations employed. To evaluate this, we ran a second "cold"

case until the final nonlinear residual was 9.85 × 10 -6, or three additional orders of

magnitude. This required three additional Newton steps, for a total of seven, and

totals of 254 preconditioned GMRES iterations and 463 CPU seconds. No differences

were observed in any of the functionals plotted in the previous subsection. Thus, the

nearly doubled numbers of GMRES steps and CPU cycles were unnecessary from a

"bottom-line" viewpoint.

As can be gathered from the comparison of the just cited "cold" runs, terminated

at different stages, we observe a Newton convergence (as monitored by the residual,

since the exact solution is not known) which is closer to linear than to quadratic. It

is difficult to estimate how much of the convergence history is spent in the domain of

quadratic convergence of Newton's method in these problems, but we do not expect

to see full quadratic convergence because we employ an inexact Newton method; that

is, we tune the convergence of the linear system solves at each Newton step to the

outer progress, with a mixed relative-absolute tolerance. Further experimentation

may yield better couplings of inner to outer iterations for this class of problem, but

15

for the precision with which we report relevant functionals of the overall solution

in this investigation, the asymptotic convergence rate of Newton's method is not a
crucial feature.

We noticed two interesting couplings of the convergence progress of the backstep

problem to the discretization technique. Considering first the discretization order, we

found that the first-order discretization required more Newton steps of fewer GMRES

iterations each than the second-order discretlzatlon on the same grid to achieve a

given level of nonlinear residual reduction. Rather than four Newton steps comprising

132 GMRES iterations in the short "cold" start case discussed above, a first-order

discretization of the same problem required six Newton steps comprising a total of 123

GMRES iterations. The final nonlinear algebraic residual was a comparable 9.78 ×

10 -3, and the CPU time required was only i49 Seconds instead of 229 seconds. Since

the approximation to the underlying differential equation was demonstrably superior

for the second-order discretization, the extra 54% of CPU cycles was well worth it, but

the difference in algebraic behaviors of the two discretizations is interesting to note.

It suggests the hypothesis that a push to higher-order upwind discretizations would

eventually be defeated by the rising cost of solving the resulting discrete equations.

The cross-over point remains to be determined and should be evaluated on the basis

of CPU time for a given solution accuracy.

Another interesting coupling of the convergence progress to the discretization

concerned the grid density. For a given discretization order, the same "cold"-started

Re = 100 problem was run at globally uniform resolutions of h -1 = 10, h -1 = 20,

and h -I = 40. The largest of these problems required 90,642 degrees of freedom for

its representation. For our cold start, the first Newton step is based on a flow field

containing no vorticity singularities and is discussed as a special case immediately

below. Immediately following Newton steps required substantially more GMRES

steps than the first one at all grid densities. However, the effect was more pro-

nounced at the higher grid densities. Thus, the h -1 = 10 case jumped from 8 to 31

GMRES iterations between Newton iterations 1 and 2, the h -1 = 20 case from 11 to

51 GMRES iterations, and the h -1 = 40 case from 14 to 79 iterations. Since it is not

practical to store Krylov subspaces of such high degree for such large problems, we

were forced to use restarted GMRES in these tests, which requires more iterations

than a full GMRES. We used a maximum Krylov dimension of 40. Newton steps

subsequent to the second generally required successively fewer GMRES steps, taper-

ing to fairly small numbers in the last outer iteration. A practical implication from

this study is that highly resolved flow computations should be approached through a

sequence of grids ranging from coarse to fine, so that much of the numerical shock of

vorticity singularities can be distributed at coarser scales and subsequently refined.

This practice is, of course, fundamental to the FMV form of multigrid and can be

recommended on theoretical and practical grounds in the context of the solution of

BVPs by Newton's method; see, e.g., [26].

Finally, we note in the preceding paragraph the logarithmic growth in h -1 of the

number of GMRES iterations required in the first Newton step. Each doubling of

16

z

w

L

Table 1. Total execution time, T (in sec), and relative speedup, s,

over a range of numbers of processors, p, of the Intel iPSC/860

for five different discretizations of the backstep flow problem at

Reynolds number 100, solved by using Newton's method. All data

are for a fixed tessellation of 112 tiles. Labels "Global" and "Lo-

cal" refer to the span of the refined regions, N is the total number

of unknowns in the discrete system, and I_ is the number of GM-

RES iterations required in executing the first Newton step. Missing

entries could not be computed because of memory limitations in

smaller clusters of processors. Perfect relative speedups between

successive rows would be 2.

h[]! = 10
Global

N = 5,862

/,=8

P T l s

2 16.3

4 10.2 1.60

8 6.3 1.62

16 4.3 1.47

32 3.7 1.16

h_] = 20
Local Global

N=10,422 N=22,922

6=11 /1=11

17.2 - -

4.7 1.36 82. 1._2

h-_]I = 40

N = 40,742 IIN = 90,642
I,=13 [[11=14

29.9 -

17.5 1.70 49.3

the mesh density h-' (with the same underlying tessellation) resulted in a constant

increase of 3 in the number of iterations required. This follows the theory for the

scalar equation summarized in Section 2.1.

With the exception of the discussion of linear problems in the last paragraph

(addressed in a larger context in [14]), these remarks must be regarded as specific to

the flow configuration studied. We expect, however, that they provide useful rules

of thumb for domain-decomposed iterations for nonlinear elliptic BVPs, and we plan

to ascertain their generality in a variety of cold and reacting flow configurations in

subsequent reports.

4.3. Parallel Performance. We conclude this section with Table 1 showing

performance curves for the tile algorithm on the Intel iPSC/860. Because parallel

efficiency is crucially dependent upon arithmetic task and processor granularity and

load balance, we investigate power-of-two sequences of problem and processor array

sizes. Because typical problems are too large to fit on a single processor, we cannot

report overall speedups, but report relative speedups with each doubling of processor

array size.

Traversing columns, we observe the typical degradation in speedup as processors

are added at a fixed problem size. Traversing rows, we observe the typical improve-

17

ments in speedupsas problem size is increasedat a fixed processorforce. Going
down the main diagonalwenote that parallel performanceis maintained whenpro-
cessorand problem sizesare scaledin proportion. (An exceptionoccurs in the last
row (p = 32), where systematic load imbalancesoccur becausep does not evenly

divide the number of tiles for the first time in the table; thus, half of the nodes have

three tiles and the other half have four.) However, we note that overall execution

time is not likely to be optimized by indefinite increases in the effective h -x at fixed

tessellation; a more complete study would include several (p, h -a)-planes like Table 1

at different H -a. The subdomain factorlzation complexities currently contain terms

cubic in h -a and, similarly, the crosspoint factorization complexities contain terms

cubic in H -1. These leading terms should be balanced against one another, or the

modules contributing them should be replaced with, for instance, multigrid solves.

Multigrid makes a particularly attractive solver for large subdomain problems, since

the subdomains generally possess greater uniformity than the problem as a whole.

The table also affords a crude indication of the value of adaptive refinement.

Comparing the "Local" and "Global" columns at the same h_-]i , we see memory

and execution time savings of factors of two or more for local refinement, with the

memory savings allowing a smaller feasible number of processors to solve the problem

to the same h-d]f.

Though of dubious value in evaluating algorithms, raw performance data on the

iPSC/860 may also be of interest. Our aggregate flop rate on 32 processors ranged

from about 1.5Mflops in the crosspoint solve phase to 126Mflops in the parallelized

matrix-vector multiplies with the operator A for the largest problem of over 90,000

unknowns. For this largest problem, 110Mflops and 99Mflops, respectively, were re-

alized in doing the concurrent subdomain factorizations and backsolves constituting

the A71 phase of the preconditioner application. Extrapolation of some of these ag-

gregate rates to larger clusters of processors and problem sizes is nontrivial because of

both external communication and internal memory hierarchies, but we would expect

execution rates for operations like the subdomain factorizations and backsolves to

extrapolate roughly linearly in the number of processors, for the same discrete-size
tiles.

FORTRAN77 and C compilers for the iPSC/860 are regarded as immature at

present. We used the Greenhills compilers with optimizations -0LM -Z618. We

compared FORTRAN77 and C versions of the most compute-intensive kernels on a

model 10 × 10 tile and selected the fastest of each, which was usually the C version.

(The parallel skeleton of the code is entirely in C, but some modules executing

sequentially within a processor are in FORTRAN77.) We also tried the Portland

Group compiler on our kernels and did not find it to be significantly better at the

highest safe optimization level. We believe that there is little room for additional

optimization of the arithmetic processing rates relative to supplied hardware and

software technology and, therefore, that the speedups do not suffer from any artificial

inflation. Because we preserve local uniformity of the data structures, it should

be possible to get higher performance from some kernels by making better use of

18

=

the processor memory caches. The software currently available on the systems to

which we have access does not exploit this structure. We prefer to wait for compiler

improvements rather than rewrite these kernels in i860 assembly language.

We hope to benefit in the future from better support for global communication

along with improved compilers. The GMRES solver relies heavily on global inner

products (there are thousands of inner products in a typical execution), so improve-

ments to this one communication-intensive operation will substantially improve the

overall parallel efficiency of our code on typical elliptic systems. It is possible to

group the inner products within a single GMRES orthogonalization phase in order

to make the number of calls to the global reduction routine proportional to the itera-

tion count, rather than to its square in the naive implementation. This optimization

has so far been implemented only for the case in which A and B are based on the

same discretization.

With an eye towards applications, we note that in the present code approximately

97% of the execution time is consumed in the linear algebra modules. This includes

83% of the time in the preconditioner, 5% of the time in the matrix-vector multiplies,

and 9% of the time in GMRES apart from calls to form the action of A and B -1. The

preconditioner work breaks down, in turn, into 59% of the total time in backsolves

and 24% in factorizations. The evaluation of the coefficients of the operators A and

B and the computation of the nonlinear residuals of the streamfunction-vorticity

system accounts for only about 3% of the total execution time. In our experience

with solving reacting flow problems with detailed models for the chemical kinetics

and transport on serial computers, the nonlinear residual and Jacobian evaluation

phases of the calculations can themselves consume the dominant share of execution

time. As models with more complex source terms and multicomponent transport

laws are added to the present code, we expect improved parallel efficiencies, since

ratio of local operations to neighbor data exchanges is higher in such problems.

5. Concluding Remarks. As demonstrated by adaptively refined parallel com-

putations of nonlinear, non-selfadjoint, multicomponent model fluid flow problems,

domain decomposition is maturing as a practical algorithmic paradigm for engineer-

ing applications. Among various types of divide-and-conquer algorithms, two-scale

preconditioned domain-decomposition is a natural compromise between the require-

ments of the problem physics, current parallel hardware, and maintainable, portable

software. However, much research remains to be performed before previously inacces-

sible computations, such as complex multidimensional convection-diffusion-reaction

systems, become quotidian.

Theoretically, more guidance in the construction of general-purpose precondi-

tioners is needed. Known optimal three-dimensional preconditioners for nonoverlap-

ping decompositions are very cumbersome to program. In two dimensions further

research is needed on interface preconditloners for multlcomponent problems and on

multilevel preconditioners, to remove the burden of a "too fine" coarse-grid solve.

From a parallel computing perspective, the main unresolved issue in domain

19

decomposition is the trade-off between good load balance and good data locality.

This is common to many problems in parallel computation. An issue to be addressed

in the future is mapping onto massively parallel computers consisting of MIMD

clusters of SIMD arrays. The two-level tile algorithm seems ideally suited to such an

architecture, as discussed briefly in [14].

Advances in automatic adaptive dlscretization techniques from the past decade

[12] need to be incorporated into domain decomposition software. Building libraries

of tiles is one convenient way to aid this effort in the context of the current algorithm.

Finally, as with any powerful solution algorithm, preconditioned domain decom-

position iterative techniques need to be integrated into complete supercomputing

environments in order to make testing on genuine engineering applications conve-

nient. User-interactive problem definition, visualization, and computational steering

(particularly of nonlinear problems) are needed. By relying less on global structure

than many solution algorithms and providing much in the way of local structure

to powerful nodes, domain decomposition is a natural algorithmic bridge between

applications and architectures.

=,

Acknowledgments. We are grateful for the opportunity to run on the Intel

iPSC/860 hypercube at the Institute for Computer Applications in Science and En-

gineering, NASA-Langley Research Center. We thank Thomas W. Crockett for his

management of the resource, and Director Robert G. Voigt for his partial sponsorship
of this research.

20

REFERENCES

[1] M. J. Berger and S. H. Bokhari, A Partitioning Strategy for Non-uniform Problems across
Multiprocessors, IEEE Trans. on Comput., C-36 (1987), pp. 570-580.

[2] .l. It. Bramble, J. E. Pasciak, and A. H. Schatz, The Construction of Preconditioners for
Elliptic Problems by Substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[3] A. Brandt, The Weizmann Institute Research in Multilevel Computation: 1988 Report, in

Proceedings of the Fourth Copper Mountain Conference on Multigrid Methods, 3. Mandel,
S. F. McCormick, J. E. Dendy, Jr., C. Farhat, G. Lonsdale, S. V. Parter, :I. W. Ruge, and

K. Stiiben, eds., SIAM, Philadelphia, 1989, pp. 13-53.
[4] X.-C. Cat, An Additive Sehwarz Algorithm for Nonselfadjoint Elliptic Equations, in Third In-

ternational Symposium on Domain Decomposition Methods for Partial Differential Equa-

tions, T. F. Chan, R. Glowinski, J. P6riaux, and O. B. Widlund, eds., SIAM, Philadelphia,

1990, pp. 232-244.

[5] X.-C. Cat, W. D. Gropp, and D. E. Keyes, Convergence Rate Estimate for a Domain Decom-

position Method, Yale Univ., Dept. of Comp. Sci., RR-827, October 1990.

[6] T. F. Chan and D. E. Keyes, Interface Preconditionings for Domain-Decomposed Convection-
Diffusion Operators, in Third International Symposium on Domain Decomposition Meth-

ods for Partial Differential Equations, T. F. Chan, R. Glowinski, J. P_riaux, and O. B.

Widlund, eds., SIAM, Philadelphia, 1990, pp. 245-262.

[7] M. K. Denham and M. A. Patrick, Laminar Flow over a Downstream-facing Step in a Two-
dimensional Flow Channel, Trans. Inst. Chem. Engrs. 52 (1974), pp. 361-367.

[8] M. Dryja and O. B. Widlund, An Additive Variant of the Schwarz Alternating Method for
the Case of Many Subregions, NYU, Courant Institute TR 339, December 1987.

[9] S. C. Eisenstat, H. C. Elman, and M. It. Schultz, Variational Iterative Methods for Nonsym-

metric System of Linear Equations, SIAM :1. Numer. Anal. 20 (1983), pp. 345-357.

[10] H. C. Elman, Y. Saad, and P. E. Saylor, A tlybrid Chebyshev-Krylov Subspace Algorithm
for Solving Nonsymmetrie Systems of Linear Equations, Yale Univ., Dept. of Comp. Sci.,

RR-301, February 1984.

[II] P. F. Fischer and A. T. Patera,ParallelSpectral Element Methods for the Incompressible

Navier-Stokes Equations, in Solution of Superlarge Problems in Computational Mechanics,

J. tI. Kane, A. D. Carlson and D. L. Cox, eds., Plenum, New York, 1989, pp. 49-65.

[12] J. E. Flaherty, P. J. Paslow, M. S. Shephard, and J. D. Vasilakis, eds., Adaptive Methods for

Partial Differential Equations, SIAM, Philadelphia, 1989.

[13] W. D. Gropp and D. E. Keyes, Domain Decomposition on Parallel Computers, hnpact of

Comput. in Set. and Eng. 1 (1989), pp. 421-439.

[14] W. D. Gropp and D. E. Keyes, Domain Decomposition with Local Mesh Refinement, Inst. for

Comp. Appl. in Set. and Eng., Technical Report 91-19, February 1991.

[15] W. D. Gropp and D. E. Keyes, Parallel Performance of Domain-Decomposed Preconditioned
Krylov Methods for PDEs with Adaptive Refinement, Yale Univ., Dept. of Comp. Sci.,

RR-773, March 1990.

[16] W. D. Gropp and D. E. Keyes, Parallel Domain Decomposition and the Solution of Nonlin-

ear Systems of Equations, Mathematics and Computer Science Preprint MCS-P186-1090,

Argonne National Laboratory, October 1990.

[17] D. E. Keyes and W. D. Gropp, Domain-Decomposable Preconditioners for Second-Order

Upwind Discretizations of Multicomponent Systems, Mathematics and Computer Science

Preprint MCS-P187-1090, Argonne National Laboratory, October 1990.

[18] .l.M. Leone, :lr., and P. M. Gresho, Finite Element Simulations of Steady, Two-Dimensional,

Viscous Incompressible Flow over a Step, :I. Comp. Phys. 41 (1981), pp. 167-191.

[19] N. M. Nachtigal, L. Reichel, and L. N. Trefethen, A Ilybrid GMRES Algorithm for Non-
symmetric Linear Systems, Proceedings of the Copper Mountain Conference on Iterative

Methods, April 1990.

[20] D. M. Nicol, J. It. Saltz, and :I. C. Townsend, Delay Point Schedules for Irregular Parallel

Computations, Int.]. Parallel Processing 18 (1989), pp. 69-90.

21

[21]A. T. Patera,A SpectralElementMethodforFluidDynamics:LaminarFlowin a Channel

Expansion, J. Comp. Plays/,ts(i984), pp. 468-488.

[22] P.J. Roache, Computational Fluid Dynamics, Hermosa, Albuquerque, 1972.

[23] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving

Nonsymmetric Linear Systems, SIAM 3. Sci. Star. Comp. 7 (1986), pp. 865-869.
[24] P. E. Saylor and D. C. Smolarski, Implementation of an Adaptive Algorithm for Richard-

son's Method, EidgenSssische Technische Hochschule Ziirich, Dept. of Informatics, Inst.

for Scientific Computing, Report 139, October !990.
[25] M. D. Smooke, Solution of Burner-Stabilized Pre-Mixed Laminar Flames by Boundary Value

Methods, 3. Comp. Phys. 48 (1982), pp. 72-105,

[26] M. D. Smooke and R. M. M. Mattheij, On the Solution of Nonlinear Two-Point Boundary

Value Problems on Successively Refined Grids, Appl. Num. Math. 1 (1985), pp. 463-487.
[27] It. A. Van der Vorst, Bi-CGSTAB: A More Smoothly Converging Variant of CG-S for the

Solution of Nonsymmetric Linear Systems, July 1990. (Manuscript)

[28] O. C. Zienkiewiczi, 3. Z. Zhu, A. W. Craig, and M. Ainsworth, Simple and Practical Error

in forEstimation and Adaptivityi :h:and_h- p Version Procedures, _ Adaptive Methods

Partial Differential Equations, 3. E. Flaherty, P. 3. Paslow, M. S. Shephard, and 3. D.
Vasilakis, eds., SIAM, Philadelphia, 1989, pp. 100-114.

22

L Report Documentation Page
t_l_c,alt_tOr'_uT__rk'l

1. Report NO.
NASA CR- 187529

ICASE Report No. 91-20

4. Title and Subtitle

2. Government Accession No. 3. Recipient's Catalog No.

, 5. Report Date

DOMAIN DECOMPOSITION METHODS IN COMPUTATIONAL FLUID

DYNAMICS

7. Author(s)

William D. Gropp

David E. Keyes

9, Pedorming Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

February 1991

6, Performing Organization Code

8. Performing Organization Report No.

91-20

10. Work Unit No.

505-90-52-01

11. Contract or Grant No.

NASI-18605

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring ,_gency Code

15. Supplementaw Notes

Langley Technical Monitor:
Michael F. Card

Submitted to International Journal

of Numerical Methods in Fluids

Final Report

16. Abstract

The divide-and-conquer paradigm of iterative domain decomposition, or substruc-

turing, has become a practical tool in computational fluid dynamics applications be-

cause of its flexibility in accommodating adaptive refinement through locally uniform

(or quasi-uniform) grids_ its ability to exploit multiple discretizations of the op-

erator equations, and the modular pathway it provides towards parallelism. We illus-

trate these features on the classic model problem of flow over a backstep using

Newton's method as the nonlinear iteration. Multiple discretizations (second-order

in the operator and first-order in the preconditioner) and locally uniform mesh re-

finement pay dividends separately, and they can be combined synergistically. We in-

clude sample performance results from an Intel iPSC/860 hypercube implementation.

17. Key Words(SuggestedbyAuthor(s))

domain decomposition, preconditioning,

Kyrlov methods, Newton's method, computa-

tional fluid dynamics, parallel computing

19. SecuriW Cla_if, (of this report)

Unclassified

18, Distribution Statement

34 - Fluid Mechanics
and Heat Transfer

64 - Numerical Analysis

Unclassified - Unlimited

. Securi Cla_if. (_ this pa_) 21. No. of pa_s

Unclassified 24

22. Price

A03

NASA FORM 1626 OCT 86 NASA-Langley,1991

